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Overview of Presentation

z Modeling an Application’s CPU-Time Use

z Adapting CPU-Time Models for Use by Mobile Code in 
Heterogeneous Networks

z Applying Adaptive CPU-Time Models (Experiments in Progress)

� Control Execution of Mobile Code in Magician Execution 
Environment

� Predict CPU Consumption among Network Nodes using 
GE’s Active Virtual Network Management Prediction 
(AVNMP) System

z Future Research and Related Publications
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Modeling CPU Use by Applications

Trace is a series of system calls and 
transitions stamped with CPU time use

…
begin, user (4 cc), read (20 cc), user (18 cc), 
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc), 
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc), 
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc), 
kill (20 cc), user (8 cc), end
…

Trace is a series of system calls and 
transitions stamped with CPU time use

Trace is a series of system calls and 
transitions stamped with CPU time use

…
begin, user (4 cc), read (20 cc), user (18 cc), 
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc), 
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc), 
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc), 
kill (20 cc), user (8 cc), end
…

(1) Monitor at System Calls in Node Operating System

(2) Generate Execution Trace

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

AA2

EE1:ANTS (java)

read write kill...read write kill...
ANodeOS interface

OS layer
Physical layer

Scenario A: 
sequence = “read-write”, 
probability = 2/5

Scenario B: 
sequence = “read-kill”, 
probability = 3/5

Distributions of CPU time in system calls 
:

Distributions of CPU time between system calls :
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sequence = “read-write”, 
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Scenario B: 
sequence = “read-kill”, 
probability = 3/5

Distributions of CPU time in system calls 
:

Distributions of CPU time between system calls :
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(3) Consume Trace & 
Generate Application Model
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Adapting CPU-Time Models for Mobile 
Code in Heterogeneous Networks

The Average Absolute Deviation (in Percent) of Simulated 
Predictions from Measured Reality for  Each of Two Active 
Applications (Average High Percentile Considers Combined 
Comparison of  80th, 85th 90th, 95th, and 99th Percentiles)

Each Node Constructs a Node Model using two 
calibration benchmarks:
� a system benchmark program ⌫ for each 

system call, average system time 
� for VM, an app. benchmark program ⌫

average time spent in the VM between 
system calls

To scale an App. Model in a network, select one 
Node Model as a reference known by all other 
nodes

Some Sample Results: Scaling Magician 
Application Models between Selected Pairs of 
Nodes vs. Scaling with Processor Speeds Alone

App. model on node X:
read  30 cc
user  10 cc
write 20 cc

Model of node X:
read  40 cc
write 18 cc
user  13 cc

Model of node Y:
read  20 cc
write 45 cc
user   9 cc

scale

App. model on node Y:
read  30*20/40 = 15 cc
user  10*9/13  =  7 cc
write 20*45/18 = 50 cc

Scaling From Node X to Node Y
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Application: Control Execution of Mobile Code

Experiment in Progress: Control CPU Usage by Mobile Programs

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Malicious Packet dropped too late 
(CPU use reached TTL + tolerance)

Needed 
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL +  tolerance)

TTL

CPU time 
possibly “wasted” Additional CPU 

time needed

When mobile code CPU usage 
controlled with fixed allocation or 
TTL, malicious or “buggy” mobile 
programs can “steal” substantial CPU 
cycles, especially on fast nodes

When mobile code CPU usage controlled with 
fixed allocation or TTL, correctly coded 
mobile programs can be terminated too soon 
on slow nodes, wasting substantial CPU cycles
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CPU Control: Expected Results
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Application: Predict CPU Usage among Network 
Nodes: Experiment in Progress

GE Active Virtual Network 
Management Prediction 

(AVNMP) System
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Can NIST Models enable
AVNMP to predict CPU use

among heterogeneous network 
nodes, while providing better 

look ahead and improved 
prediction efficiency than 
simple TTL approaches?
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CPU Prediction: Expected Results
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Future Research

z Improve Our Models
� Model Node-Dependent Conditions
� Attempt to Characterize Errors Bounds 
� Improve the Space-Time Efficiency of Our Models
� Continue Search for Low-Complexity Analytically Tractable Models
� Investigate Models that Continue to Learn

z Investigate Competitive-Prediction Approaches
� Run Competing Predictors for Each Application
� Score Predictions from Each Model and Reinforce Good Predictors
� Use Prediction from Best Scoring Model

z Apply Our Models
� CPU Resource Allocation Control in Node Operating System
� Network Path Selection Mechanisms that Consider CPU Requirements
� CPU Resource Management Algorithms Distributed Across Nodes
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